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Abstract—Complex event detection over data streams has
become ubiquitous through the widespread use of sensors,
wireless connectivity and the wide variety of end-user mobile
devices. Typically, such event detection is carried out by a data
stream management system executing continuous queries (CQs),
previously submitted by the users. In this paper, we consider the
situation where the results of the CQs, which are in the form
of individual data streams, are disseminated to the users’ hand-
held, battery-operated devices over a shared broadcast medium.
In order to reduce the overall energy consumption of the mobile
devices, we propose BOSe*, a power-aware query operator
placement algorithm that determines which part of a CQ plan
should be executed at the data stream management system and
which part should be executed at the mobile device. BOSe*’s
effectiveness in reducing energy consumption, as well as response
time under specific conditions, is evaluated using simulation,
driven by parameters measured on real mobile devices.

I. INTRODUCTION

Research in energy conservation in mobile and wireless
networks has always been driven by the fact that there is a gap
between the energy consumed processing data compared to the
energy consumed for transmitting or receiving data at a mobile
device, in the favor of local processing. This is especially
true as the CPUs of the mobile devices become even faster,
with newer devices even featuring two-cores. This fact has led
to the design principle of trading off communication energy
consumption for computation energy consumption (e.g., [14]).
In this paper, we apply this principle to minimize the energy
consumption on mobile users’ hand-held, battery-operated
devices of Data Stream Management Systems (DSMSs).
Specifically, we consider monitoring applications where mo-

bile users register continuous queries (CQ) specifying events
of interest to them to be efficiently executed by a DSMS
over unbounded data streams. The results of CQs are also
in the form of continuous data streams that are continuously
disseminated to the mobile end-users over a shared broadcast
wireless medium. As an example of a CQ submitted by a
mobile user, consider the query of a trader which monitors
stock price updates, at the floor of a market exchange (Fig. 1):
it selects the stocks that are in the NASDAQ index (operator
O1); projects out the columns of no interest (operator O2);
joins the tuples with user’s portfolio to append the buying
price (operator O3); and finally, calculates the user’s profit in

1This work was supported by NSF grants IIS-0534531 and IIS-1050301.

the last 5 minutes, every 30 seconds (operator O4).
Our approach is to split the load of query processing

between the DSMS and the mobile user devices themselves by
opportunistically taking advantage of the reduced size of inter-
mediate results to shorten the mobile devices’ listening time of
the broadcast and, consequently, reduce their communication
energy cost, at the cost of additional local processing. In our
trader query example, the first two operators O1 (select) and
O2 (project) are data reducing, while the operator O3 (join)
and O4 (aggregation) could potentially be data expanding.
Thus, O3 and O4 could be shipped to the mobile client, and
the much smaller intermediate result produced by O2 will be
broadcast. Further, CQs often share prefixes which include
the same operators (as in Fig. 1(b)), making it even more
beneficial to broadcast intermediate results shared by multiple
queries since the overall broadcast size will be reduced.
In our prior work in [12], we have laid the groundwork

for our approach by proposing three operator placement algo-
rithms assuming a simplistic CQ execution model. Of these,
the BOSe (Broadcast-aware Operator Selection) algorithm was
the best performing. Encouraged by our preliminary results, in
this paper we present and evaluate BOSe* which is based on
a realistic CQ execution model that supports operator sharing
among queries and sharing of queries among users. Our results
have also suggested that BOSe* reduces response times under
specific conditions.
Contributions: This paper’s contributions can be summarized
as follows:
1) We propose BOSe*, an operator placement algorithm,
which takes into account the broadcast organization,
sharing of operators and sharing of queries to provide
the most overall energy savings at the mobile devices.

2) We present a heuristic parameterized variant of BOSe*,
namely, BOSe-vlook, which significantly reduces the
cost for generating high-quality operator placement
plans which are comparable to those of the basic BOSe*.

3) We provide an extensive experimental evaluation, using
parameters obtained from experiments using real mobile
devices. Our results show that BOSe* can achieve an
overall energy reduction of up to 53%.

Outline: Section II provides the system model. Section III
presents BOSe* and Section IV describes its evaluation. Sec-
tion V surveys related work. Section VI lists our findings.



II. SYSTEM MODEL

In our model, the DSMS implements as a core module a
wireless disseminator which broadcasts the results of CQs to
the mobile users (clients).

A. Data Stream Processing
A CQ evaluation plan generated by the query optimizer

can be conceptualized as a data flow tree [1], [6], where
the nodes are operators that process tuples and the edges
represent the flow of tuples from one operator, e.g., Ox, to
another, Oy (Fig. 1(a)), where upstream(Oy) = Ox and
downstream(Ox) = Oy . Each operator is associated with a
queue where input tuples are buffered until they are processed.
A single-stream query Qk has a single source operator,

e.g., Ok
1 and a single output operator, e.g., Ok

4 . Further, in
a query plan Qk, an operator segment Gk

x,y is the sequence of
operators that starts at Ok

x and ends at Ok
y . If the last operator

on Gk
x,y is the output operator, then we simply denote that

operator segment as Gk
x.

When two or more continuous queries share a common sub-
expression, that sharing translates into identical prefix operator
segments across the plans for those queries. In such case,
the DSMS continuous query optimizer typically chooses to
instantiate this prefix only once. The results produced by this
prefix segment are shared among the remaining suffixes of
the queries that share this prefix. For each operator Ox in the
shared segment, we define Q(Ox) as the set of queries sharing
Ox. For example, in Fig. 1.(b), Q(O1) = Q(O2) = {Qk, Qj}.
Another popular form of sharing which can be seen as a special
case of operator sharing is when the same query is shared
(submitted by) two or more clients. In such a case, for each
shared query Qk, we define C(Qk) as the set of clients sharing
Qk. We define C(Ox) as the set of clients who registered
queries that share Ox (e.g., C(Oj,k

x ) = C(Qj) ∪ C(Qk).)
In a query Qk, an operator Ok

x (or simply Ox) could be
select (σ), project (π), aggregate (e.g.

∑

), or join-table (!"T ).
Each operator is associated with three parameters:
• cx: the number of cycles needed to process an input tuple.
• sx: the ratio of output tuples produced by Ox after pro-
cessing one input tuple. Thus, sx is less than or equal to
1 for a filter operator and it could be greater than 1 for a
join operator.

• px: the ratio between the size of a tuple produced by Ox

(i.e., output size) to its size before being processed (i.e.,
input size). Thus, px is less than or equal to 1 for a project
operator and it may be greater than 1 for a join operator.
For an operator Ox, with upstream(Ox) = Ox−1, we

define the following characterizing parameters :
• tnx: is the number of tuples produced at the output of

Ox after processing the tnx−1 tuples in its input queue:
tnx = tnx−1 × sx

• tsx: is the size of each tuple produced at the output of Ox

after processing a tuple in its input queue: tsx = tsx−1×px

• dsx: is the size of the data block produced at the output

Fig. 1: Continuous Query Plan

queue of Ox after processing a block of data from its input
queue: dsx = tnx × tsx

Notice that if Ox is the output operator in query Qk , then
dsx is the total size of the data block produced by Qk.

B. Wireless Broadcast

In this work, we adopt broadcast push ([3]) since it naturally
complies with the DSMS access model where a client installs
a CQ once and the server repeatedly broadcasts the new results
as they become available. Hence, any number of clients can
monitor the broadcast channel and retrieve data as it arrives,
at a constant bandwidth speed: BW.
In our model, the wireless disseminator initiates a new

broadcast cycle as soon as the previous one ends. Each cycle
consists of a sequence of results which could be either a
final result (i.e., produced at a query’s output operator) or
an intermediate result (i.e., produced at a query’s internal
operator). In general, we denote the broadcast result produced
by Ox as Dx and its size in bytes as |Dx |. Moreover, if Ox

is shared by more than one query then those results are also
shared on the broadcast and only appear once.
The result Dx of an operator Ox appears on the broadcast

channel as a contiguous sequence of data packets preceded
by a descriptor packet that contains an identifier of Q(Ox)
and the time offset to the next broadcast cycle. Accordingly,
each client should tune to each broadcast cycle for results
corresponding to its registered CQs. During tuning, the client’s
network interface card (NIC) is in active mode consuming
relatively large amounts of energy compared to when the
client’s NIC is switched to an idle mode. Hence, the amount
of energy consumed by a wireless client depends on the data
organization [11], [10].
In this paper, we adopt two basic data organization schemes.

The first data organization scheme uses sorted broadcast,
where the broadcast server sorts the results according to the
data size and the popularity of each result. In particular, each
result Dx is assigned a priority Px equal to Rx

|Dx|
, where Rx

is the number of queries that share the result Dx produced
by operator Ox. That is, Rx =

∣

∣

∣

⋃

QiεQ(Ox) C(Qi)
∣

∣

∣

. The
broadcast is then organized in descending order of priority.
This maintains a broadcast that follows the weighted shortest
job first scheduling policy which has been shown to minimize
total response time in shared resources [7].
Accordingly, a client Ni that registered a set of queries

Q(Ni) = {Q1, Q2, ..., Qm} will need to download a set
of results (either final or intermediate) where each of those
results might correspond to one or more queries in Q(Ni). In



particular, Ni will download results {D1, D2, ..., Dn} where
n is the number of results and n ≤ m. Hence, if the queries
in Q(Ni) do not share any operators then n = m, otherwise
n < m. Finally, Ni’s tuning time TT (Ni) is computed as:

TT (Ni) =
|Dmin | +

P

j |Dj |

BW
,∀y : Pj > Pmin (1)

where Dmin is the result with the minimum priority among
all the results {D1, D2, ..., Dn}. In particular, the client will
tune from the beginning of the broadcast downloading results
for queries in its registered set and it will stay tuned until it
downloads the last one (with Dmin) in that set.
The second data organization scheme uses an indexed

broadcast, where the broadcast server attaches an index at
the beginning of each broadcast cycle (e.g., a (1,1) index
[11]). The index contains an entry for each result Dx on the
broadcast in the form < Q(Dx), tx >, where tx is the time
offset of Dx within the broadcast cycle. In this scheme, a
client Ni needs to first tune to the index packet to learn the
broadcast times for each of the results corresponding to the
queries that it has registered for, then power off its NIC until
the time of the smallest of those timestamp, say ts. At time
ts, Ni powers on its NIC again, tunes into the broadcast to
retrieve that result (i.e., Ds) and after it finishes fetching all
of Ds’s data packets, powers off the NIC again until the next
timestamp or the next broadcast cycle, if there are no other
timestamps remaining. The tuning time for a node Ni in the
indexed broadcast is computed as:

TT (Ni) =

Pn
x=1 |Dx | + |Index |

BW
(2)

where n is the number of results corresponding to Ni’s queries
as defined before, |Dx | is the size of each of those results,
and |Index | is the size of the index.

C. Mobile Clients
Mobile clients, serviced by the system, can register multiple

queries and then listen to a broadcast medium to get their
results. We assume that each mobile client is associated with
a profile that includes the following four characteristics:
• Speed(Ni): processing speed of the client in cycles per
unit of time.

• PP (Ni): power consumed per unit of time of processing.
• PT (Ni): power consumed per unit of time of tuning (i.e.,
when the NIC is active).

• EPowerUp: energy needed to power up the NIC.
Based on the client profiles, the energy consumption, and

computational cost can be computed. Specifically the tuning
energy, ETune for a client Ni:

ETune(Ni) = TT (Ni) × PT (Ni) + U(Ni) × EPowerUp (3)

where TT (Ni) is the tuning time and U(Ni) is the number of
times the client needs to power up the NIC.
The processing power, EProcess for a client Ni, given the

processing time, TP as:

EProcess(Ni) = TP × PP (Ni) (4)

III. BOSE*: BROADCAST AWARE OPERATOR SELECTION
In this section, we formalize the placement of CQ operators

in DSMS environments with mobile clients and propose our
new operator placement algorithms, BOSe* and its variant.

A. Problem Statement
Our goal is to design operator placement algorithms that

work in synergy with the broadcast organization so that we
minimize the total energy consumption at the mobile clients.
The total energy consumption is the sum of two components:
tuning and processing, which can be expressed as:

ETotal = ETune + EProcess (5)

Given the clients’ profiles and their corresponding registered
queries, an operator placement algorithm decides to shift some
of the computation to the client if it is beneficial in reducing
the overall total energy consumption. Specifically, for each
query it splits its query plan into two segments, where the
first segment is processed on the DSMS, whereas the second
one on the clients who registered to the query. For instance,
if client Ni registered queries Q(Ni) = {Qj, Qk} and their
plans were split at operators Oj

x and Ok
y respectively, then

the operators in G = Gj
x+1,output and Gk

y+1,output have to
be processed on the client. The set of operators executed at
Ni is expressed as: G = Gj

x+1,output ∪ Gk
y+1,output, to cover

the case where the two segments share common operators and
need to be instantiated only once on each client.
Thus, for a client Ni running segments G = Gj

x+1,output ∪
Gk

y+1,output ∪ ..., the processing time is computed as:

TP (Ni) =
X

Ok∈G

ck × tnk−1

Speed(Ni)
(6)

Using Eq. 4 we can now find the processing energy
EProcess consumed by each wireless client Ni for use in
calculating the total processing power on each client in Eq. 5
In our prior work [12], we proposed the following two algo-

rithms along with BOSe (the preliminary version of BOSe*.)
a) DataMinCut: minimizes the tuning energy expended

by the clients. It does so by using the Max-flow Min-cut
theorem, on the whole query network, which is cast into a
flow-graph, to select the edges E whose data will populate
the broadcast. Each edge in the flow graph is labeled with the
average data size flowing through it.

b) PowerMinCut: attempts to minimize the overall en-
ergy by choosing the edges that result in smallest total energy
(tuning and processing) for the client. It augments the edge
labels with the client processing energy cost of all the oper-
ators downstream of each edge. This algorithm neglects the
broadcast organization and thus may result in suboptimal en-
ergy consumption as, depending on the broadcasting scheme,
a local decision may negatively affect other clients.

B. Broadcast-aware Operator Selection (BOSe*)
BOSe* could be perceived as a hybrid of DataMinCut and

PowerMinCut as it integrates the desirable features of each.
On one hand, like DataMinCut, BOSe* tries to minimize the



length of the broadcast cycle to minimize tuning energy. On
the other hard, BOSe*, like PowerMinCut, considers the extra
energy needed for operator processing at the client.
BOSe* uses the DataMinCut output as a starting point and

then applies a greedy selection process geared towards finding
a segment of operators downstream from the current cut and
reinstating them back on the server. Since DataMinCut gives
the minimal broadcast size, that means that any reinstatement
by BOSe* will incur an increase in the broadcast no matter
what. However, BOSe* will only perform a reinstatement if
its benefit in terms of reducing processing energy is greater
than the cost incurred in terms of increasing tuning energy,
which depends on the broadcast organization.
At each iteration, BOSe* examines all the current broadcast

edges, E. For each edge Ex ∈ E, it generates a list of all the
possible segments of operators following that edge, vertically
as well as horizontally. That is, all the prefixes of the operator
segments Gj

x+1,output, for all of the queries Qj in Q(Ox).
It does this recursively by adding to the current segment, all
possible combinations of operators connected to it (power-
set), taken from the next level of operators. This process is
performed for each edge in E and the segment with the highest
impact in reducing total energy is selected and its operators are
reinstated to the server. BOSe* repeats the selection process
until no further improvement in energy is achievable.
BOSe* optimization function: Recall that at each step,

BOSe* is expected to increase the tuning energy while de-
creasing the processing energy as compared to DataMinCut.
Assume these changes are ∆Tune and ∆Process, respectively.
Hence, after BOSe makes a selection, the overall energy
consumption from Eq. (5) can be expressed as:

ETotal = (ETune + ∆Tune) + (EProcess − ∆Process)

Clearly, our objective is to select an operator segment which
minimizes the value: ∆Tune −∆Process which should also be
less than zero. Thus, we simply need to compute that value for
each operator segment under consideration and select the one
with the lowest value. To illustrate this process, assume that
ER ∈ E. Further, assume that G is one of those prefixes under
examination, which is considered as a candidate to be moved
from client Ni back to the server side. For instance, G, in
Fig. 2. Moving G back to the server will reduce the processing
energy by the amount ∆Process, computed as follows:

∆Process =
X

Oj∈G

X

Ni∈C(Oj)

„

tnj−1 × cj

Speed(Ni)
× PP (Ni)

«

Further, moving segment G back to the server entails
replacing, in the broadcast E, its input edge (i.e., edge ER)
with G’s output edges, say EA1

and EA2
(Fig. 3). The impact

of this replacement operation, on the tuning energy (∆Tune)
depends broadcast organization.
In the case of sorted broadcast, removing ER will reduce

the tuning time for all clients Ni receiving data from ER.
Additionally, it will also reduce the tuning time for all the
clients waiting for results that appear after ER on the broadcast
cycle (NR). This reduction per client is simply dsR/BW ,




 

Fig. 2: DataMinCut and operator segment G = {Gd,e
2,2, Gc

2,3}.



 

Fig. 3: Optimization step for BOSe algorithm.

where dsR is the data size of associated with edge ER. Hence,
the total reduction is computed as:

∆R =
dsR

BW
×

0

@

X

Ni∈C(ER)

PT (Ni) +
X

N∈NR

PT (N)

1

A (7)

Similarly, adding EAi will increase the tuning time for the
clients Ni receiving data from EAi and will also increase
the tuning time for all the clients waiting for results that
appear after EAi on the broadcast cycle (Fig. 3), including any
newly added edges which will appear after EAi . This increase
per client is simply dsAi/BW , where dsAi is the data size
associated with edge EAi . This increase is computed as:

∆A =
X

Ai∈EA

0

@

dsAi

BW
×

0

@

X

N∈C(EAi
)

PT (N) +
X

N∈NAi

PT (N)

1

A

1

A

(8)

where NAi is the set of clients waiting for results that appear
after EAi on the broadcast cycle.
Moreover, under a sorted broadcast, the location of the new

edge EAi on the broadcast cycle is determined according to
each one’s data size. Since dsAi > dsR, ∀i, then EAi will
appear at a further offset than ER’s one. Therefore, when EAi

replaces ER, the clients Ni which consume results in EAi will
have to spend more tuning time to receive them than what they
used to spend to receive ER. This translates into extra tuning
energy which is computed as:

∆R,A =
X

Ai∈EA

X

N∈C(EAi
)

P

E∈ER,Ai
dsE

BW
× PT (N) (9)

where ER,Ai is the set of edges on the broadcast cycle that
appear after ER and before EAi .
Thus, ∆Tune for the sorted broadcast is computed as:

∆Tune = −∆R + ∆A + ∆R,A



In the case of indexed broadcast the optimization is sim-
plified since the edge remove/add operation will only affect
the client under examination without any impact on the other
clients in the system (i.e., ∆R,A = 0 in Eq. 9). Thus, ∆Tune

for the indexed broadcast is denoted by ∆′
Tune = −∆′

R+∆′
A,

where equations 7 and 8 become:
∆′

R =
X

N∈C(ER)

dsR

BW
× PT (N) (10)

∆′

A =
X

Ai∈EA

X

N∈C(EAi
)

dsA

BW
× PT (N) (11)

It is interesting to note that the above equations clearly
reveal that BOSe* on indexed broadcast behaves like Pow-
erMinCut on indexed broadcast. This fact is also confirmed
by our experimental results.
Complexity and Approximation: The BOSe* algorithm is

performing an exhaustive search over all possible combina-
tions of operators both vertically and horizontally. The number
of combinations for each edge in E is

∑logdn
i 2i. To reduce

the search space we propose a parameterized version of BOSe,
called BOSe-vlook(x), which limits the cardinality of the set
taken from the power-set (as mentioned before) up to x.

IV. EXPERIMENTAL EVALUATION
In this section, we illustrate the performance of our algo-

rithms using our own simulator driven by parameters deter-
mined from experimental results using a mobile device.

A. Experimental Setup
The algorithms – DataMinCut, PowerMinCut, and BOSe*

and its varient – are implemented in Java and run as they
would on a real system. As a base case, we also implemented
ServerOps which executes all the operators on the server and
broadcasts the final results to the clients.
The workload used in the simulator is a complete plan of

the registered CQs, along with the mobile clients’ profiles
which include their speed and power consumption parameters
for processing and tuning.
We measure the total energy consumption at all the mobile

clients as the ratio of processing to tuning power of the nodes
increases linearly from 0.01 to 0.65, while keeping the tuning
power constant. The remaining parameters are summarized in
Table I. It should be noted that from our measurements on
real hardware we found these ratios to be between 0.0104 and
0.6572. The values reported are averages of 15 runs.

B. Experimental Results (Energy)
Sorted Broadcast: As Fig. 4 shows, BOSe* outperforms all

other algorithms. ServerOps’ performance is constant because
it runs all operators at the server side, and thus increasing
the processing power of mobile clients will have no impact
on its performance. It also shows that DataMinCut is lin-
early increasing because DataMinCut tries to minimize only
the tuning energy and not the processing energy. Hence,
DataMinCut selects the same set of edges for every setting
regardless of the increase in power consumption needed for
processing. PowerMinCut performs better than DataMinCut
and ServerOps; however, it is oblivious to the broadcast

TABLE I: Workload Default Characteristics

Levels per query refers to the number of operators which exist in every single-
stream query in the workload. Operator cost skewness is a Zipf distribution
per level is towards the high cost and is proportional to the level number; in
the default setting the skewness of operator level i is equal to 0.2 × i.

Parameter Values
Number of queries 50
Number of clients 25
Number of clients per query 1-5 (Zipf)
Levels per query 10
Sharing levels 2
Maximum Degree of Operator Sharing 3
Sources tuple rate 500 – 1000 tuples/sec uniform
Sources tuple size 2000 – 4000 bytes uniform
Selectivity 0.2 – 1.8, uniform
Projectivity 0.5 – 1.5, uniform
Operator costs (cycles/tuple) 100 × 106 − 200 × 106

Operator cost skewness 0.2 increments (Zipf)
Hand-held device speed 1 × 109 cycles/sec
Server speed 1 × 3.49 cycles/sec
Bandwidth 125000 bytes/sec
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Fig. 4: Energy consumption for Tuning Vs Processing power cost for sorted
broadcast, normalized over ServerOps.

organization as it considers each query individually without
measuring the impact of its selected edge on the other clients
in the system. BOSe* is always performing better than any of
the other algorithms because it evaluates the different options
taking into account both the broadcast organization and the
processing power costs of operators running on the mobile
clients, thus striking a fine balance between both tuning and
processing energies. For instance, at a processing to tuning
energy ratio of 0.01 BOSe* provides an improvement in energy
of 50% over ServerOps and at 0.35 an improvement of 14%. In
the extreme case of 0.65, it still provides a small improvement.
The heuristics BOSe-vlook(2) and BOSe-vlook(3) perform

very similarly to BOSe*. The reduction in number of compu-
tations is very significant: 38% for BOSe-vlook(3) and 75%
for BOSe-vlook(2), while the performance remains very close
to the best (up to 99%) for BOSe-vlook(3).
Indexed Broadcast: Due to space limitations we omit these

results; however they are similar to those seen in Fig. 4. For
example the energy savings in this broadcasting scheme are
53% compared to ServerOps, at a ratio of 0.01. In this case
BOSe* and PowerMinCut perform identically as the broadcast
order does not effect the power consumption of the clients.
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Fig. 5: Average response time of client queries for Tuning Vs Processing
power cost for sorted broadcast, normalized over ServerOps.

C. Experimental Results (Response Time)
Although we were optimizing for power consumption on the

client, we noticed notable gains for the response time of client
queries (Fig. 5). This can be attributed to the fact that while the
server handles all queries (we assume a round-robin scheduler)
the client need only be concerned with processing operators
for queries that it is interested in and can dedicate its resources
to that end. Thus, by broadcasting an intermediate result, the
client can complete the computations quicker. However, this
is only true when the following equation holds for a client Ni

(without loss of generality assume only one query for Ni):

TTServerOps +TP (Server) ≥ TTBOSe +TP (Ni)+T ′
P (Server)

If the workload remains the same, we know that
TP (Server) ≥ T ′

P (Server) and TTServerOps ≥ TTBOSe where
T ′

P is the new server processing time under BOSe*. This
means that TP (Ni) (the time to process on client Ni) has to be
low enough to not dominate the other components. In general,
longer processing time on a client means higher energy drain
so BOSe*, while minimizing power consumption, will also
reduce response time since long-running operators will not be
moved to the client. However, clients with efficient CPUs may
see a higher response time as BOSe* may choose to move
more operators to these clients, thus increasing response time
while decreasing power consumption.

V. RELATED WORK

Current DSMSs’ assume that the underlying network layer
is responsible for propagating the output data streams to end-
users. However, this decoupling of the system from the trans-
port layer eliminates the chance of exploiting the CQs’ char-
acteristics for better bandwidth utilization. Previous research
on Publish/Subscribe and mobile information systems shows
the importance of considering queries’ semantics together with
employing advanced data dissemination schemes (e.g., [5], [4],
[8], [11]). In these schemes, data of interest for multiple clients
is only disseminated once, thus making an effective use of the
available bandwidth and allowing maximum scalability. In this
paper, we apply the same concept in disseminating a DSMS’s
output data streams for scalability and energy savings.

The idea of query operator shipping to reduce the network
cost in a distributed database system was used in MOCHA [13]
where data reducing operators were pushed towards the data
sources and the data producing operators towards the clients.
This is similar to our approach, but in our case the data is
disseminated to the clients through a broadcast network instead
of point-to-point. Also, [13] considers ad-hoc queries, whereas
in our work we consider CQs over data streams.
The idea of query operator distribution was proposed in dis-

tributed DSMS (D-DSMS) (e.g., [2]) for workload balancing.
Similar to our approach, several approaches of CQ operator
distribution in D-DSMSs consider data transmission overhead
(e.g., [16], [15], [9]). All the D-DSMS approaches consider
point-to-point unicast connections between the distributed
nodes, as opposed to our work that considers broadcast push.
Further, these techniques do not consider energy consumption.

VI. CONCLUSIONS
In this paper, we proposed BOSe*, a query operator place-

ment algorithm that splits the load of CQ processing between
the DSMS and the mobile user devices in order to minimize
the overall energy consumption on the mobile devices. Our
extensive experimental evaluation showed the effectiveness of
BOSe* in distributing the query operators in a way that reduces
the size of the query results that need to be continuously
disseminated to the mobile users and which leads to an overall
reduction up to 53% in energy in mobile devices, compared
to the traditional centralized CQ processing at the DSMS.
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